设命题为“若m>0,则关于x的方程x2+x-m=0有实数根”,试写出它的否命题、逆命题和逆否命题,并分别判断它们的真假.
问题描述:
设命题为“若m>0,则关于x的方程x2+x-m=0有实数根”,试写出它的否命题、逆命题和逆否命题,并分别判断它们的真假.
答
否命题为“若m≤0,则关于x的方程x2+x-m=0没有实数根”;(3分)
逆命题为“若关于x的方程x2+x-m=0有实数根,则m>0”;(6分)
逆否命题“若关于x的方程x2+x-m=0没有实数根,则m≤0”. (9分)
由方程的判别式△=1+4m得△>0,即m>−
,方程有实根.1 4
∴m>0使1+4m>0,方程x2+x-m=0有实数根,∴原命题为真,从而逆否命题为真.(10分)
但方程x2+x-m=0有实根,必须m>−
,不能推出m>0,故逆命题为假.(11分).从而否命题为假.(12分)1 4