设loga(c),logb(c)是方程x^2-3x+1=0的两根,求loga/b(c)的值
问题描述:
设loga(c),logb(c)是方程x^2-3x+1=0的两根,求loga/b(c)的值
答
loga(c),logb(c)是方程x^2-3x+1=0的两根loga(c)+logb(c)=3loga(c)*logb(c)=1logc(a)+logc(b)=1/loga(c)+1/logb(c)=[loga(c)+logb(c)]/loga(c)*logb(c)=3logc(a)*logc(b)=1/loga(c)*1/logb(c)=1(logc(a)-logc(b))^2=(...