求解微分方程(y^2-1)dx+(y^2-y+2x)dy=0 急
问题描述:
求解微分方程(y^2-1)dx+(y^2-y+2x)dy=0 急
答
求解微分方程(y²-1)dx+(y²-y+2x)dy=0
P=y²-1;Q=y²-y+2x;∂P/∂y=2y≠∂Q/∂x=2,故不是全微分方程;
下面求积分因子:由于(∂Q/∂x-∂P/∂y)/P=(2-2y)/(y²-1)=-2(y-1)/(y+1)(y-1)=-2/(y+1)=f(y)
故积分因子M(x,y)=e^[∫f(y)dy]=e^[-2∫dy/(y+1)]=e^[-2ln(y+1)]=e^[ln(y+1)ֿ²]=1/(y+1)²
用积分因子1/(y+1)²乘原式两边得;
[(y-1)/(y+1)]dx+[(y²-y+2x)/(y+1)²]dy=0.(1)
此时P=(y-1)/(y+1);Q=(y²-y+2x)/(y+1)²;
由于∂P/∂y=[(y+1)-(y-1)]/(y+1)²=2/(y+1)²;∂Q/∂x=2/(y+1)²;即有∂P/∂y=∂Q/∂x=2/(y+1)²,
故(1)是全微分方程.取xo=0,yo=0,则(1)的解为:
u(x,y)=[0,x]∫[(y-1)/(y+1)]dx+[0,y]∫[(y²-y)/(y+1)²]dy
=(y-1)x/(y+1)+[0,y]∫[1-3/(y+1)+2/(y+1)²]dy
=(y-1)x/(y+1)+y-3ln(y+1)-2/(y+1)
=y-3ln(y+1)+(xy-x-2)/(y+1)
于是得原方程的通解为y-3ln(y+1)+(xy-x-2)/(y+1)=C