如图,图中的四边形都是正方形,三角形都是直角三角形,其中正方形的面积分别记为A、B、C、D,则它们之间的关系为(  )A. A+B=C+DB. A+C=B+DC. A+D=B+CD. 以上都不对

问题描述:

如图,图中的四边形都是正方形,三角形都是直角三角形,其中正方形的面积分别记为A、B、C、D,则它们之间的关系为(  )
A. A+B=C+D
B. A+C=B+D
C. A+D=B+C
D. 以上都不对

如图,∵a2+b2=e2,c2+d2=e2
∴a2+b2=c2+d2
∴A+B=C+D.
故选:A.
答案解析:根据勾股定理和正方形的面积公式可以得到A+B=C+D.
考试点:勾股定理.


知识点:本题考查了勾股定理.勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.