设某种电子元件的寿命T服从双参数的指数分布,其概率密度为f(t)=(1/θ)e^-(t-c)θ,t>=c,f(t)=0,其中,c,θ为未知参数,均大于0,从一批这种元件中随机地抽取n件进行寿命试验.设它们的失效时间依次为x1

问题描述:

设某种电子元件的寿命T服从双参数的指数分布,其概率密度为f(t)=(1/θ)e^-(t-c)θ,t>=c,
f(t)=0,其中,c,θ为未知参数,均大于0,从一批这种元件中随机地抽取n件进行寿命试验.设它们的失效时间依次为x1

(1)θ与c的矩估计量
令x=t-c,则x服从参数为θ的标准指数分布,因此Ex=θ,Dx=θ^2
Ex=Et-c=θ--->c=Et-θ=X'-θ
Dx=Dt=S^2=θ^2-->θ=(Dx)^(1/2)=S
所以矩估计量c=X'-θ=X'-S,θ=S
2)θ与c的极大似然估计量
极大似然函数L(θ,c)=(1/θ^n)e^(-n(X'-c)/θ)
对c求导后c消失,求导法无效,因为c