已知函数f(x)=x2+ax+b,g(x)=x2+cx+d.若f(2x+1)=4g(x),且f′(x)=g′(x),f(5)=30,求g(4).
问题描述:
已知函数f(x)=x2+ax+b,g(x)=x2+cx+d.若f(2x+1)=4g(x),且f′(x)=g′(x),f(5)=30,求g(4).
答
∵f(x)=x2+ax+b,g(x)=x2+cx+d,
∴由f(2x+1)=4g(x)得(4+2a-4c)x+1+a+b-4d=0,
即a-2c+2=0,a+b-4d+1=0;
又∵f′x=g′(x),得a=c,
再∵f(5)=30,得5a+b=5,
四个方程联立求得:a=c=2,b=-5,d=-
1 2
则g(x)=x2+2x-
,1 2
∴g(4)=
.47 2