概率论 关于方差和数学期望的基本性质的一个问题我们知道对于任意常数C有E(C)=C那么如果对于任意常数XY是否有E(XY)=XY=E(X)E(Y)?如果是的话就有以下问题了,对于任意两个随机变量X和Y有D(X+Y)=D(X)+D(Y)+2E{E(XY)-E(X)E(Y)},特别的,当X和Y独立时有D(X+Y)=D(X)+D(Y),如果上述成立的话独立性不久混淆了吗?我知道之前说的X和Y是常数,而现在说的X和Y是变量,但是证明D(X+Y)=D(X)+D(Y)+2E{E(XY)-E(X)E(Y)}的时候就把X和Y当作了常数来看待,所以有X=E(X),Y=E(Y),才有了XY=E(XY)才能得到上述结论,我纠结的地方就是在于这里,为什么XY不能等价成E(X)E(Y),反正X和Y不都是常数么,为什么不能分开分别进行变化?
问题描述:
概率论 关于方差和数学期望的基本性质的一个问题
我们知道对于任意常数C有E(C)=C
那么如果对于任意常数XY是否有E(XY)=XY=E(X)E(Y)?
如果是的话就有以下问题了,对于任意两个随机变量X和Y有
D(X+Y)=D(X)+D(Y)+2E{E(XY)-E(X)E(Y)},特别的,当X和Y独立时有D(X+Y)=D(X)+D(Y),如果上述成立的话独立性不久混淆了吗?
我知道之前说的X和Y是常数,而现在说的X和Y是变量,但是证明D(X+Y)=D(X)+D(Y)+2E{E(XY)-E(X)E(Y)}的时候就把X和Y当作了常数来看待,所以有X=E(X),Y=E(Y),才有了XY=E(XY)才能得到上述结论,我纠结的地方就是在于这里,为什么XY不能等价成E(X)E(Y),反正X和Y不都是常数么,为什么不能分开分别进行变化?
答