1+2+3+n=2分之1n(n+1),n是正整数,研究1*2+2*3+你(n+1),观察1*2=3分之1(1*2*3-0*1*2);2*3=3分之1(2*3*4-1*2*3);3*4=3分之1(3*4*5-2*3*4)将这三个等式的两边分别
问题描述:
1+2+3+n=2分之1n(n+1),n是正整数,研究1*2+2*3+你(n+1),观察1*2=3分之1(1*2*3-0*1*2);2*3=3分之1(2*3*4-1*2*3);3*4=3分之1(3*4*5-2*3*4)将这三个等式的两边分别相加,可以得到1*2+2*3+3*4=3分之1*3*4*5=20,请问1*2+2*3+3*4+,+100*101=?
答
1*2+2*3+3*4+.+100*101=3分之1(1*2*3-0*1*2)+3分之1(2*3*4-1*2*3)+3分之1(3*4*5-2*3*4)+3分之1(4*5*6-3*4*5)+.+3分之1(99*100*101-98*99*100)+3分之1(100*101*102-99*100*101)=3分之1(1*2*3-0*1*2+2*3*...