反复掷掷一个骰子,依次记录下每一次抛掷落地时向上的点数,当记有三个不同点数时即停止抛掷,若抛掷五次恰好停止,则记有这五次点数的所有不同记录结果的种数有( )A. 360种B. 600种C. 840种D. 1680种
问题描述:
反复掷掷一个骰子,依次记录下每一次抛掷落地时向上的点数,当记有三个不同点数时即停止抛掷,若抛掷五次恰好停止,则记有这五次点数的所有不同记录结果的种数有( )
A. 360种
B. 600种
C. 840种
D. 1680种
答
在3次不同点数是停止且在第5次停止,所以前4次抛掷有2种数字,第5次才出现第3种数字.由于在前4投中有任意2个不同的数出现故为C62=15,所以最后1投是在剩余4个数中任选1个数,有C41=4在任取的前2个数中,假设为X和Y...
答案解析:在3次不同点数是停止且在第5次停止,所以前4次抛掷有2种数字,第5次才出现第3种数字.由于在前4投中有任意2个不同的数出现故为C62,所以最后1投是在剩余4个数中任选1个数有C41,列举出四个位置的数字的情况,根据分步计数原理得到结果.
考试点:排列、组合的实际应用.
知识点:本题考查排列组合的实际应用,本题解题的关键是分析好第五次正好停止所包含的事件,列举出前四种结果的不同的情况.