关于x的一元二次方程x^2+(2k-3)x+k^2=0有两个不相等的实数根α、β
问题描述:
关于x的一元二次方程x^2+(2k-3)x+k^2=0有两个不相等的实数根α、β
(1)求k的取值范围 我求出来是k≤3/4
(2)α+β+αβ=6,求(α-β)^2+3αβ-5的值
答
(1)若方程有两个相异实根,则△>0,即:(2k-3)^2-4k^2>0解之如下:4k^2-12k+9-4k^2>09-12k>0k<3/4(2)若α+β+αβ=6,即有: 3-2k+k^2=6(k-1)^2=4解得k=-1.(k=3不满足k<3/4的条件,舍去)(α-β)^2+3αβ-...