一个四面体由平面z=1-x-y与三个坐标平面围成,利用二重积分计算出它的体积.(提示:该四面体在xoy平面上的一面是直线y+x=1与两坐标轴围成的三角形)

问题描述:

一个四面体由平面z=1-x-y与三个坐标平面围成,利用二重积分计算出它的体积.(提示:该四面体在xoy平面上的一面是直线y+x=1与两坐标轴围成的三角形)

它的体积=∫dx∫(1-x-y)dy
=∫{[(1-x)y-y²/2]│}dx
=∫[(1-x)²/2]dx
=[(1/2)(-1/3)(1-x)³]│
=1/6.