计算下列n(>=2)阶方阵的行列式1.a+1 -1 1 -1A= 1 a-1 1 -11 -1 a+1 -11 -1 1 a-12.x a .aAn= a x .a...a a .x3.an bn......A2n = a1b1c1d1..,其中未写出的元素均为零....cn dn4.a1 x1x2 a2 ....Xn-1 an

问题描述:

计算下列n(>=2)阶方阵的行列式
1.
a+1 -1 1 -1
A= 1 a-1 1 -1
1 -1 a+1 -1
1 -1 1 a-1
2.
x a .a
An= a x .a
...
a a .x
3.
an bn
..
..
..
A2n = a1b1
c1d1
..,其中未写出的元素均为零
..
..
cn dn
4.
a1 x1
x2 a2
..
..
Xn-1 an

1. a+1 -1 1 -1 a -1 1 -1 1 -1 1 -1 A= 1 a-1 1 -1 = a a-1 1 -1 = a× 1 a-1 1 -1 1 -1 a+1 -1 ...