线性代数,行(列)满秩矩阵等价于矩阵的行(列)向量线性无关吗?也就是它们两个可以互相推得吗?能证明吗
问题描述:
线性代数,行(列)满秩矩阵等价于矩阵的行(列)向量线性无关吗?也就是它们两个可以互相推得吗?能证明吗
答
行(列)满秩矩阵等价于矩阵的行(列)向量线性无关,这是对的,它们两个可以互相推得.不需要证明.
因为矩阵的行秩就是其行向量组的最大线性无关组所含向量的个数,如果矩阵行满秩,则其行向量组的最大线性无关组所含向量的个数一定等于矩阵的行数.即矩阵的行向量组是线性无关的.
同样对列也是一样.