微分方程y`=e^(2x-y) 满足初始条件y|(x=0)=1 的特解是
问题描述:
微分方程y`=e^(2x-y) 满足初始条件y|(x=0)=1 的特解是
答
y'=e^(2x)/e^y
e^ydy=e^2xdx
∫e^ydy=∫e^2xdx
e^y=1/2e^2x+C
e=1/2+C C=e-1/2
e^y=1/2e^2x+e-1/2
y=ln(1/2e^2x+e-1/2)
答
分离变量得
e^ydy=e^(2x)dx
两边积分得
e^y=1/2e^(2x)+C