微积分2,判断连续可微问题已知四个点P1(-2,1,1,),P2(2,-1,1),P3(1,-2,1),P4(-1,2,1)都满足方程F(X,Y,Z)=X^2+XY+Y^2+Z^2-2Z-2=0,则由方程F(X,Y,Z)=0必可确定出唯一的连续可微函数.A Z=Z(X,Y)并满足Z(-2,1)=1;B Y=Y(X,Z)并满足Y(-1,1)=2;C Y=Y(X,Z)并满足Y(2,1 )=-1;D X=X(Y,Z)并满足X(-2,1)=1;】
问题描述:
微积分2,判断连续可微问题
已知四个点P1(-2,1,1,),P2(2,-1,1),P3(1,-2,1),P4(-1,2,1)都满足方程F(X,Y,Z)=X^2+XY+Y^2+Z^2-2Z-2=0,则由方程F(X,Y,Z)=0必可确定出唯一的连续可微函数.
A Z=Z(X,Y)并满足Z(-2,1)=1;
B Y=Y(X,Z)并满足Y(-1,1)=2;
C Y=Y(X,Z)并满足Y(2,1 )=-1;
D X=X(Y,Z)并满足X(-2,1)=1;
】
答
求出F(x,y,z)对x,y,z的三个偏导数:Fx=2x+y,Fy=x+2y,Fz=2z-2点P1处,Fx=-3,Fy=Fz=0,只有x作因变量时,才可以确定一个连续可微的函数x=x(y,z),且偏导数αx/αy=-Fy/Fx=0,αx/αz=0.四个选项中没有符合要求的点P2处,Fx=3...