微积分中凑微分法和倒代换有什么差别啊这个问题好像有点问题,但是我就是搞不懂啊.凑微分的例子是∫ sinxcosxdx = ∫sinxdsinx.到,倒代换的例子是令x = 1/y、dx = - 1/y^2 dy∫ 1/[x(1 + x^8)] dx= ∫ y/(1 + 1/y^8) * (- 1/y^2 dy)= - ∫ y^7/(1 + y^8) dy= (- 1/8)∫ 1/(1 + y^8) d(1 + y^8)= (- 1/8)ln(1 + y^8) + C= (- 1/8)ln(1 + 1/x^8) + C(随便来的),个人觉得凑微分的例子的下一步是∫ sinxcosxdx=∫udu,令sinx =u.有点疑惑
问题描述:
微积分中凑微分法和倒代换有什么差别啊
这个问题好像有点问题,但是我就是搞不懂啊.凑微分的例子是∫ sinxcosxdx = ∫sinxdsinx.到,倒代换的例子是令x = 1/y、dx = - 1/y^2 dy
∫ 1/[x(1 + x^8)] dx
= ∫ y/(1 + 1/y^8) * (- 1/y^2 dy)
= - ∫ y^7/(1 + y^8) dy
= (- 1/8)∫ 1/(1 + y^8) d(1 + y^8)
= (- 1/8)ln(1 + y^8) + C
= (- 1/8)ln(1 + 1/x^8) + C(随便来的),个人觉得凑微分的例子的下一步是∫ sinxcosxdx=∫udu,令sinx =u.有点疑惑
答
什么凑微分,倒代换(我没听说过),不都是换元法的某种变形么?
这都是微积分中数学方法而已,并不是严格的数学定理
或定义,没有必要纠结它们之间的界限或差别,只需记住最基本的
定理就行了。
换元的作用只不过简化形式,便于书写、阅读和理解而已,
并不是必须的过程。
答
凑微分的例子的下一步是换元,就是将sinx替换,进而就得到结果.而你看倒代法是换元后计算dx的结果,也就是将x = 1/y当成用y表示的函数,这里x成为了函数x(y),然后计算x的微分
这一步
= (- 1/8)∫ 1/(1 + y^8) d(1 + y^8)
又使用了凑微分.
区别也就是上面说的那些,其实在实际应用和解题中没必要区分,可以交替使用.