定积分上限为0下限为-13x^4+3x^3+1/x^2+1dx的第一步=[0,-1]3x^2+1/x^2+1dx怎么来的
问题描述:
定积分上限为0下限为-13x^4+3x^3+1/x^2+1dx的第一步=[0,-1]3x^2+1/x^2+1dx怎么来的
答
∫[-1,0][(3x^4+3x^2+1)/(1+x^2)]dx
=∫[-1,0] 3x^2dx +∫[-1,0] 1/(1+x^2)]dx
=x^3 | [-1,0] + acrtanx | [-1,0]
=0^3 - (-1)^3 +0-(-π/4)
=1+π/4