已知a,b∈R,且a2+ab+b2=3,设a2-ab+b2的最大值和最小值分别为M,m,则M+m=______.
问题描述:
已知a,b∈R,且a2+ab+b2=3,设a2-ab+b2的最大值和最小值分别为M,m,则M+m=______.
答
答案解析:令t=a2-ab+b2,由a2+ab+b2=3可得a2+b2=3-ab,结合基本不等式的性质,进而可得ab-3≤2ab≤3-ab,解可得ab的范围,又由a2+b2=3-ab,则t可变形为3-2ab,由ab的范围,可得M、m的值,代入可得答案.
考试点:基本不等式;基本不等式在最值问题中的应用.
知识点:本题考查基本不等式的性质与运用,正确运用公式要求“一正、二定、三相等”,解题时要注意把握和或积为定值这一条件.