求和:Sn=1/(1+根号3)+1/(根号3+根号5)+...+1/(根号2n-1+根号2n+1)
问题描述:
求和:Sn=1/(1+根号3)+1/(根号3+根号5)+...+1/(根号2n-1+根号2n+1)
答
Sn=1/(1+根号3)+1/(根号3+根号5)+...+1/(根号2n-1+根号2n+1)
=(根号3-1)/(3-1)+(根号5-根号3)/(5-3)+(根号7-根号5)/(7-5)+...+1/(根号2n+1-根号2n-1)/(2n+1-2n+1)
=1/2[(根号3-1)+(根号5-根号3)+(根号7-根号5)+...+(根号2n+1-根号2n-1)]
=1/2[(根号2n+1)-1]
答
记住,这一类题都是裂项求和
1/(根号2n-1+根号2n+1)=根号2n+1/2+根号2n-1/2
每一项都这样裂,能消掉
答
Sn=1/(1+根号3)+1/(根号3+根号5)+...+1/(根号2n-1+根号2n+1)
1/(根号2n-1+根号2n+1)=1/2[根号(2n+1)-根号(2n-1)]
所以:
sn=1/2{根号3-1+根号5-根号3+根号7-根号5+...+根号(2n+1)-根号(2n-1)}
=1/2{根号(2n+1)-1}