定义数列﹛an﹜:a1=3/2,﹙an=a﹙n-1﹚+n-1n为奇数,3a﹙n-1﹚n为偶数﹚Ⅰ、求a2,a3,a4的值,Ⅱ、记bn=a﹙2n-1)+n+1/2,n∈正整数,求证:数列﹛bn﹜是等比数列;Ⅲ记Sn=a1+a2+······+a(2n-1)+a(2n),试比较[S2(n+1)+3]/3^(n+1)与[S(2n)+3]/3^n的大小,并说明理由这道题目中的Sn你是怎么求的,不用奇偶讨论吗

问题描述:

定义数列﹛an﹜:a1=3/2,﹙an=a﹙n-1﹚+n-1n为奇数,3a﹙n-1﹚n为偶数﹚
Ⅰ、求a2,a3,a4的值,Ⅱ、记bn=a﹙2n-1)+n+1/2,n∈正整数,求证:数列﹛bn﹜是等比数列;Ⅲ记Sn=a1+a2+······+a(2n-1)+a(2n),试比较[S2(n+1)+3]/3^(n+1)与[S(2n)+3]/3^n的大小,并说明理由
这道题目中的Sn你是怎么求的,不用奇偶讨论吗

对Sn不用奇偶讨论
{bn}为等比数列,可知bn=3^n
b1+b2+……+bn=3*(3^n-1)/2
因bn=a﹙2n-1)+n+1/2,得a(2n-1)=bn-n-1/2
且n为偶数时an=3a﹙n-1﹚
则Sn=a1+a2+……+an=a1+3*a1+a2+3*a2+……+an+3*an
=4*(a1+a3+……+a(2n-1))
=4*(b1+b2+……+bn-n/2-1-2-……-n)
=6*3^n-6-2n*(n+2)
所以S(2n)=6*9^n-6-4n(2n+2)
S(2(n+1))=6*9^(n+1)-6-4(n+1)(2n+4)
将要比的两项通分,前者分子减后者分子=36*9^n+14-n^2>0
所以前大于后

Ⅰ、a2=3a1=9/2
a3=a2+2=13/2
a4=3a3=39/2
Ⅱ、bn=a﹙2n-1)+n+1/2
b1=a1+1+1/2=3
2n+1为奇数
b(n+1)=a﹙2n+1)+n+1+1/2
=a(2n)+2n+n+1+1/2
=3a﹙2n-1)+3n+3/2
=3(a﹙2n-1)+n+1/2)
=3bn
所以数列﹛bn﹜是一个首项是3,公比是3的等比数列
Ⅲ、由上例可以看出a﹙2n-1)=bn-n-1/2
又a﹙2n)=3a﹙2n-1)
所以Sn=4{[3(1-3^N)/(1-3)]-n(n+1)/2-1/2n}
=6(3^N-1)-2n^2-4n
S2n+3=6(3^2N-1)-8n^2-8n+3=6*3^2N-8n^2-8n-3
S2(n+1)+3=6*3^(2N+1)-2(2n+1)^2-4(2n+1)-3=6*3^(2N+1)-8n^2-16n-12
S2(n+1)+3-3 (S2n+3)=16n^2+8n-3>0(n∈正整数)
S2(n+1)+3>3 (S2n+3)
[S2(n+1)+3]/3^(n+1)>[S(2n)+3]/3^n

a(1)=3/2a(2n)=3a(2n-1)a(2n+1)=a(2n)+2n=3a(2n-1)+2na(2n+1)+(n+1)+1/2=3[a(2n-1)+n+1/2]{b(n)=a(2n-1)+n+1/2}是首项为a(1)+1+1/2=3,公比为3的等比数列.a(2n-1)+n+1/2=3^(n)a(2n-1)=3^(n)-n-1/2a(2n-1)+a(2n)=a(2n-...