(对称多项式)因式分解:x(x+z)^2+y(z+x)^2+z(x+y)^2-4xyz在加三题,因式分解:x^3+3x^2+4x^4+2x^3-11x^2+12x+3b已知:a,b是实数,且满足a^3-a^2b-b^2+a=0,求证:a=b^2.
(对称多项式)因式分解:x(x+z)^2+y(z+x)^2+z(x+y)^2-4xyz
在加三题,因式分解:x^3+3x^2+4
x^4+2x^3-11x^2+12x+3b
已知:a,b是实数,且满足a^3-a^2b-b^2+a=0,求证:a=b^2.
第一题:原式=(x+y)(x+z)的平方+z(x+y)^2-4xyz
=(x+y)的平方(x+z)的平方+z(x+y)^2-4xyz-2xyz
=(x+y)的平方【(x+z)的平方+z】-6xyz
=(x+y)的平方【(x+2z)的平方-(z^2+2xz-z)】-6xyz
第二题:原式=(3x+2)(x+2)-8x+x^3
(1)(2)题的话楼上的已经解决
这里我只说下我对第三题的看法
第三题有问题
证明有问题如下
a^3-a^2b-b^2+a=0
所以a^3-a^2b+a=b^2,
所以a(a^2-ab+1)=b^2
假设a=b^2.成立
由a(a^2-ab+1)=b^2可得a^2-ab+1=1
即有a^2-ab=0,可知b=a
如果b=a,那么这又与前面的矛盾
个人觉得此题目有问题。。。
估计是你题打错了,如果是对称多项式,应该是x(y+z)^2+y(z+x)^2+z(x+y)^2-4xyz
x(y+z)^2+y(z+x)^2+z(x+y)^2-4xyz
=x(y^2+2yz+z^2)+y(z^2+2xz+x^2)+z(x^2+2xy+y^2)-4xy
=xy^2+xz^2+yz^2+yx^2+zx^2+zy^2+6xyz-4xyz
=xy^2+xz^2+yz^2+yx^2+zx^2+zy^2+2xyz
=yx^2+zx^2+xy^2+xz^2+2xyz+yz^2+zy^2
=(y+z)x^2+(y^2+2yz+z^2)x+yz(y+z)
=(y+z)x^2+(y+z)^2x+yz(y+z)
=(y+z)[x^2+x(y+z)+yz]
=(y+z)(x+y)(x+z)
x^3+3x^2+4是无法分解因式的,可能是符号问题,这有一个
x^3-3x^2+4
=x^3-2x^2-x^2+4
=x^2(x-2)-(x^2-4)
=x^2(x-2)-(x+2)(x-2)
=(x-2)[x^2-(x+2)]
=(x-2)(x^2-x-2)
=(x-2)(x-2)(x+1)
=(x-2)^2(x+1)
x^4+2x^3-11x^2+12x+3b本人实在看不懂3b是什么意思
已知:a,b是实数,且满足a^3-a^2b-b^2+a=0,求证:a=b^2.
题目确实是有问题,将a=b^2代入原式有
b^6-b^5-b^2+b^2=0
即b^6=b^5?