用劲度系数为k的弹簧,将质量为m1和m2的两物体A和B连接并平放在光滑桌面上,使A紧靠墙,在B上施力将弹簧自原长压缩L,若以A,B,弹簧为系统,在外力撤去后,求系统质心速度的最大值?
问题描述:
用劲度系数为k的弹簧,将质量为m1和m2的两物体A和B连接并平放在光滑桌面上,使A紧靠墙,在B上施力将弹簧自
原长压缩L,若以A,B,弹簧为系统,在外力撤去后,求
系统质心速度的最大值?
答
A离开墙时 速度为0,此时B的动能等于弹性势能,所以:kL^2=(1/2)m2v^2
此后动量守恒,AB速度相等时就是质心最大速度:m2v=(m1+m2)Vc
Vc=√(2m2kL^2)/(m1+m2)