设N阶实对称阵A,B具有一个共同的K重特征值λ,若k>(λ/2),则A,B对应于特征值λ有相同的特征向量要证明的是 若K>(n/2)
问题描述:
设N阶实对称阵A,B具有一个共同的K重特征值λ,若k>(λ/2),则A,B对应于特征值λ有相同的特征向量
要证明的是 若K>(n/2)
答
证明:由A,B是n阶实对称矩阵,A,B具有一个共同的k重特征值λ知A,B的属于特征值λ的线性无关的特征向量必有k个设a1,...,ak是A的属于特征值λ的线性无关的特征向量b1,...,bk是A的属于特征值λ的线性无关的特征向量则由k>...