如图,轻弹簧上端与一质量为m的木块1相连,下端与另一质量为M的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a1、a2.重力加速度大小为g.则有(  )A. a1=0,a2=m+MMgB. .a1=0,a2=gC. a1=g,a2=gD. a1=g,a2=m+MMg

问题描述:

如图,轻弹簧上端与一质量为m的木块1相连,下端与另一质量为M的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a1、a2.重力加速度大小为g.则有(  )
A. a1=0,a2=

m+M
M
g
B. .a1=0,a2=g
C. a1=g,a2=g
D. a1=g,a2=
m+M
M
g

对1分析,弹簧的弹力F=mg.
撤去木板的瞬间,弹簧的弹力不变,木块1所受的合力仍然为零,则加速度a1=0.
对木块2,由牛顿第二定律得:a2=

F+Mg
M
=
M+m
M
g.
故选:A.
答案解析:通过共点力平衡求出弹簧的弹力大小,抓住抽出木板的瞬间,弹簧弹力不变,根据牛顿第二定律求出木块1、2的加速度.
考试点:牛顿第二定律;胡克定律.
知识点:本题考查了牛顿第二定律的瞬时问题,抓住瞬间弹簧的弹力不变,结合牛顿第二定律进行求解.