正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为1,此时四面体ABCD外接球表面积为 ___ .
问题描述:
正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为1,此时四面体ABCD外接球表面积为 ___ .
答
根据题意可知三棱锥B-ACD的三条侧棱BD⊥AD、DC⊥DA,底面是正三角形,它的外接球就是它扩展为正三棱柱的外接球,求出正三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,正三棱柱ABC-A1B1C1的中,底面边长为1...
答案解析:三棱锥B-ACD的三条侧棱BD⊥AD、DC⊥DA,底面是正三角形,它的外接球就是它扩展为正三棱柱的外接球,求出正三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的表面积即可.
考试点:球的体积和表面积;球内接多面体.
知识点:本题考查空间想象能力,计算能力;三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提.