求导数(1)y=4sinx*3cosx (2)y=sinx/x (3)y=xlnx (4)y=log3^x*e^x
问题描述:
求导数(1)y=4sinx*3cosx (2)y=sinx/x (3)y=xlnx (4)y=log3^x*e^x
答
原式=6*(2sinx*cosx)=6sin2x y'=6*2cos2x=12cos2x
y'=(x*cosx-sinx)/x^2
y'=(x)'lnx+x*(lnx)‘=1*lnx+x*(1/x)=lnx+1
原式=log3^x*e^x=(xlog3)*(e^x)
y'=(xlog3)'*(e^x)+(xlog3)*(e^x)'=log3*(e^x)+(xlog3)*(e^x)=log3*e^x*(1+x)
答
y=4sinx*3cosx
y'=12cosxcox+12sinx(-sinx)
=12cos^2(x)-12sin^2(x)
=12(cos^2(x)-sin^2(x))
=12cos2x
答
y = 4sinx * 3cosxy' = 12(cosx*cosx + sinx*(-sinx))= 12(cos²x-sin²x)= 12cos2xy = sinx / xy' = (xcosx - sinx)/x²y = xlnxy' = lnx + x(1/x)= lnx + 1y = log(3^x*e^x) = log(3e)^x = log(3e) * ...