f(x)在(0,+∞)上具有二阶导数,对一切x>0有|f(x)|≤a,|f''(x)|≤b,a,b为常数.证明:|f'(x)|≤2√ab
问题描述:
f(x)在(0,+∞)上具有二阶导数,对一切x>0有|f(x)|≤a,|f''(x)|≤b,a,b为常数.证明:|f'(x)|≤2√ab
答
设任意 正数x与h,有
f(x+h)=f(x)+f '(x)*h+1/2*f ''(x+θh)*(h^2)
其中0