解方程换元法x/(x+1)+1=(2x+2)/x

问题描述:

解方程换元法x/(x+1)+1=(2x+2)/x

令x+1=t,则x=t-1,化简为(t-1)/t+1=2t/(t-1),即-1/t=2/(t-1),则t=1/3,则x=-2/3(可不换元直接解答)

x/(x+1)+1=(2x+2)/x
x/(x+1)+1=2(x+1)/x
令x/(x+1)=z
z+1=2/z
z^+z-2=0
(z-1)(z+2)=0
z=1 z=-2
x/(x+1)=1
x=x+1
方程无解
x/(x+1)=-2
x=-2x-2
3x=-2
x=-2/3