111+222+333+.+999分之100+200+300...+900简算

问题描述:

111+222+333+.+999分之100+200+300...+900简算

(100+200+300+…+900)/(111+222+…+999)
=[(100﹢900)﹢(200+800)+(300+700)﹢(400+600)+500]/[(100+11)+(200+22)+(300+33)+(400+44)+…+(900+99)
=(1000*4+500)/ [(100+200+…900)+(11+22+33+…+99)]
=4500/[4500+(11+99)+(22+88)+(33+77)+(44+66)+55]
=4500/4995
=100/111

100/111=200/222=………=900/999
111+222+333+....+999分之100+200+300...+900=100/111

分母是(1+2+3+……+9)×111,分子是(1+2+3+……+9)×100,所以约分之后得100/111