2[Cn0+2Cn1+3Cn2+…+(n+1)Cnn] =(n+2)(Cn0+Cn1+…Cnn)怎么来的Cn0+2Cn1+3Cn2+…+(n+1)Cnn=2n+n2n-1已知Cni=Cn(n-i)则原等式左边=Cnn+2Cn(n-1)+3Cn(n-2)+…+(n+1)Cn0两式相加得2[Cn0+2Cn1+3Cn2+…+(n+1)Cnn]=(n+2)(Cn0+Cn1+…Cnn)=(n+2)2^n即Cn0+2Cn1+3Cn2+…+(n+1)Cnn=(n+2)2^(n-1)=2^n+n2^(n-1)
问题描述:
2[Cn0+2Cn1+3Cn2+…+(n+1)Cnn] =(n+2)(Cn0+Cn1+…Cnn)怎么来的
Cn0+2Cn1+3Cn2+…+(n+1)Cnn=2n+n2n-1
已知Cni=Cn(n-i)则原等式左边=Cnn+2Cn(n-1)+3Cn(n-2)+…+(n+1)Cn0两式相加得2[Cn0+2Cn1+3Cn2+…+(n+1)Cnn]=(n+2)(Cn0+Cn1+…Cnn)=(n+2)2^n即Cn0+2Cn1+3Cn2+…+(n+1)Cnn=(n+2)2^(n-1)=2^n+n2^(n-1)
答
Cn0+2Cn1+3Cn2+…+(n+1)Cnn.(1)
已知Cni=Cn(n-i) (组合数的性质,选法数=剩法数)
即C(n,0)=C(n,n),C(n,1)=C(n,n-1).
则
Cnn+2Cn(n-1)+3Cn(n-2)+…+(n+1)Cn0
即(n+1)Cn0+nCn1+(n-1)Cn2+…+Cnn .(2_
(1)+(2)得
2[Cn0+2Cn1+3Cn2+…+(n+1)Cnn]
=(n+2)(Cn0+Cn1+…Cnn)
=(n+2)2^n
即
Cn0+2Cn1+3Cn2+…+(n+1)Cnn
=(n+2)2^(n-1)
=2^n+n2^(n-1)