如图①,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1),连接BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.(1)试找出图1中的一个损矩形;(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;(4)在图②中,过点M作MG⊥y轴于点G,连接DN,若四边形DMGN为损矩形,求D点坐标.

问题描述:

如图①,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1),连接BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.
作业帮
(1)试找出图1中的一个损矩形;
(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;
(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;
(4)在图②中,过点M作MG⊥y轴于点G,连接DN,若四边形DMGN为损矩形,求D点坐标.

(1)从图中我们可以发现四边形ADMB就是一个损矩形.∵点M是正方形对角线的交点,∴∠BMD=90°,∵∠BAD=90°,∴四边形ADMB就是一个损矩形.(2)取BD中点H,连接MH,AH.∵四边形OABC,BDEF是正方形,∴△ABD,△B...
答案解析:(1)根据题中给出的损矩形的定义,从图找出只有一组对角是直角的四边形即可;
(2)证明四边形BADM四个顶点到BD的中点距离相等即可;
(3)利用同弧所对的圆周角相等可得∠MAD=∠MBD,进而得到OA=ON,那么就求得了点N的坐标;
(4)根据正方形的性质及损矩形含有的直角,利用勾股定理求解.
考试点:["\u786e\u5b9a\u5706\u7684\u6761\u4ef6","\u6b63\u65b9\u5f62\u7684\u6027\u8d28"]
知识点:解决本题的关键是理解损矩形的只有一组对角是直角的性质,综合考查了四点共圆的判定及勾股定理的应用.