怎么证明三角形的重心垂心外心共线

问题描述:

怎么证明三角形的重心垂心外心共线

三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线.
欧拉于1765年在它的著作《三角形的几何学》中首次提出定理:三角形的重心在欧拉线上,即三角形的重心、垂心和外心共线.
欧拉线的证明:
作△ABC的外接圆,连结并延长BO,交外接圆于点D.连结AD、CD、AH、CH、OH.作中线AM,设AM交OH于点G’.∵ BD是直径,∴ ∠BAD、∠BCD是直角.∴ AD⊥AB,DC⊥BC.∵ CH⊥AB,AH⊥BC,∴ DA‖CH,DC‖AH.∴ 四边形ADCH是平行四边形,∴ AH=DC.∵ M是BC的中点,O是BD的中点.∴ OM= DC.∴ OM= AH.∵ OM‖AH,∴ △OMG’ ∽△HAG’.∴ .∴ G’是△ABC的重心.∴ G与G’重合.∴ O、G、H三点在同一条直线上.