设有半径为3km的圆形村落,A、B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇.设A、B两人速度一定,其速度比为3:1,问两人在何处相遇?
问题描述:
设有半径为3km的圆形村落,A、B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇.设A、B两人速度一定,其速度比为3:1,问两人在何处相遇?
答
如图,建立平面直角坐标系,由题意可设A、B两人速度分别为3v千米/小时,v千米/小时,再设出发x0小时,在点P改变方向,又经过y0小时,在点Q处与B相遇.则P、Q两点坐标为(3vx0,0),(0,vx0+vy0).由|OP|2+|OQ|2=|...
答案解析:先根据题意,以村落中心为坐标原点,向东的方向为x轴建立直角坐标系,根据两人的速度关系设其速度及各点,将实际问题转化为数学问题,利用图形中的直角三角形得到5x0=4y0,代入直线的斜率公式可得直线的斜率,再利用直线与圆相切即可的直线方程,也就得到了该问题的解.
考试点:圆方程的综合应用.
知识点:本题考查了圆的方程的综合应用,在这个题中注意解决实际问题的基本步骤,及题目条件的转化,体现了转化思想和数形结合思想,是个中档题.