您可在这里继续补充问题细节 设F(u,v,w)是可微函数且Fu(2,2,2)=Fw(2,2,2)=3,Fv(2,2,2)=6,曲面F(x+y,y+z,z+x)=0通过点(1,1,1),求曲面在这点上的法线方程

问题描述:

您可在这里继续补充问题细节 设F(u,v,w)是可微函数且Fu(2,2,2)=Fw(2,2,2)=3,Fv(2,2,2)=6,曲面F(x+y,y+z,z+x)=0通过点(1,1,1),求曲面在这点上的法线方程

由于法线方程为(x-x0)/F'x=(y-y0)/F'y=(z-z0)/F'z,现在已知x0=y0=z0=1,就是要求F的三个偏导数,根据复合函数求导法则,F(u,v,w)对x求偏导,得F'x=Fu*u'x+Fv*v'x+Fw*w'x,由于u=x+y,v=y+z,w=z+x,所以u'x=1,v'x=0,w'x=1,代...