对复数和向量之间关系的疑惑复数的出现是因为对-1开了根号,出现了虚数单位,就这么一步怎么就能和向量对应起来了?并使得向量可以乘除了,在没有复数出现时,向量是如何进行乘除的?“对-1开了根号”原本只是一个数学规则,怎么和自然规则对应了起来,物理学中很多地方用到了向量乘除,这中间我的知识到底缺了哪一步以致有此困惑?"实际上,i=√-1 本身定义了一个方向,这个方向和实数方向是垂直的。(3+4i是无法用实数规则来计算的) 一个复数的表示方法,例如2+3i,把它记作向量形式应该是(2,3),也就是说,从原点(0,0)拉一条线段到(2,3),用极坐标表示的话,这个向量的模等于原点(0,0)到(2,3)的距离,向量的角度等于这个线段与实轴的夹角arctg(3/2)。向量的乘法:例如z=xy,那么z的模等于x的模|x|与y的模|y|的乘积。角度则等于x的角度θ(x)与y的角度θ(y)相加。其物理意义就是z是在x的基础上旋转了一个角度θ(y),同时模值也增加了|y|倍。"这些好像也仅仅是从数学角度一厢情愿地建立规

问题描述:

对复数和向量之间关系的疑惑
复数的出现是因为对-1开了根号,出现了虚数单位,就这么一步怎么就能和向量对应起来了?并使得向量可以乘除了,在没有复数出现时,向量是如何进行乘除的?“对-1开了根号”原本只是一个数学规则,怎么和自然规则对应了起来,物理学中很多地方用到了向量乘除,这中间我的知识到底缺了哪一步以致有此困惑?
"实际上,i=√-1 本身定义了一个方向,这个方向和实数方向是垂直的。
(3+4i是无法用实数规则来计算的)
一个复数的表示方法,例如2+3i,把它记作向量形式应该是(2,3),也就是说,从原点(0,0)拉一条线段到(2,3),用极坐标表示的话,这个向量的模等于原点(0,0)到(2,3)的距离,向量的角度等于这个线段与实轴的夹角arctg(3/2)。
向量的乘法:例如z=xy,那么z的模等于x的模|x|与y的模|y|的乘积。角度则等于x的角度θ(x)与y的角度θ(y)相加。其物理意义就是z是在x的基础上旋转了一个角度θ(y),同时模值也增加了|y|倍。"这些好像也仅仅是从数学角度一厢情愿地建立规则,又怎么证明是与自然法则对应的?

有乘必有除

向量有自己的乘除定义
对-1开了根号”原本只是一个数学规则,怎么和自然规则对应了起来
是数系的扩展使其对应的
你缺向量数学 解析几何和线形代数

实际上,i=√-1 本身定义了一个方向,这个方向和实数方向是垂直的.(3+4i是无法用实数规则来计算的) 一个复数的表示方法,例如2+3i,把它记作向量形式应该是(2,3),也就是说,从原点(0,0)拉一条线段到(2,3),用极...

恕我无知,向量能相除吗?
怎么除,那位大哥大姐会,告诉我