2^a×3^b=2^c×3^d=6,求证:(a-1)×(d-1)=(c-1)×(b-1)
问题描述:
2^a×3^b=2^c×3^d=6,求证:(a-1)×(d-1)=(c-1)×(b-1)
答
证明:等式全部除以2*3得:
2^(a-1)*3^(b-1)=2^(c-1)*3^(d-1)=1
再取log得:
(a-1)log2+(b-1)log3=(c-1)log2+(d-1)log3=0
移项得:loga(a-1)/(c-1)-log3(b-1)/(d-1)=1-1=0
∴(a-1)/(c-1)=(b-1)/(d-1)=1
得证
答
证法1:因为 2^a*3^b=2^c*3^d=6,所以 2^(a-1)=6/(2*3^b)=3^(1-b),2^(c-1)=6/(2*3^d)=3^(1-d).所以 2^[(a-1)(c-1)]=3^[(1-b)(c-1)],2^[(c-1)(a-1)]=3^[(1-d)(a-1)].所以 3^[(1-b)(c-1)]=3^[(1-d)(a-1)].所以 (a-1)*(d-...