高数现代矩阵题A=E-2a*aT,E是m阶单位矩阵,a是n维单位列向量,证明任意一个n维列向量B,都有||AB||=||B||.

问题描述:

高数现代矩阵题
A=E-2a*aT,E是m阶单位矩阵,a是n维单位列向量,证明任意一个n维列向量B,都有||AB||=||B||.

||Aβ||²=Aββ'A'=﹙E-2αα'﹚ββ'﹙E-2αα'﹚=ββ'-2ββ'αα'-2αα'ββ'+4αα'ββ'αα'注意α‘α β’β α‘β = β’α都是“数”﹙1行1列﹚可以和矩阵交换.且α‘α =1,∴ββ'-2ββ'α...