设A=(1 1 2,1 2 3,2 4 5),B为三阶矩阵,且A^2-AB=E,则r(AB-BA+A)=

问题描述:

设A=(1 1 2,1 2 3,2 4 5),B为三阶矩阵,且A^2-AB=E,则r(AB-BA+A)=

r(A)=3 ,A可逆,A^(-1)A=EA^2-AB=E,AB=A^2-E ,左乘A^(-1) ,B=A-A^(-1),B+A^(-1)=AAB-BA+A=A^2-E-BA+A=A^2-(E+BA)+A=A^2-[A^(-1)A+BA]+A=A^2-[A^(-1)+B]A+A=A^2-A^2+A=Ar(AB-BA+A)=r(A)=3