计算:(1²-2²/1+2)+(2²-3²/2+3)+…+(99²-100²/99+100).
问题描述:
计算:(1²-2²/1+2)+(2²-3²/2+3)+…+(99²-100²/99+100).
答
(1²-2²/1+2)+(2²-3²/2+3)+…+(99²-100²/99+100).
=1-2+2-3+。。。+99-100
=1-100
=-99
答
计算:
(1²-2²/1+2)+(2²-3²/2+3)+…+(99²-100²/99+100)
=(1+2)x(1-2)/(1+2)+(2+3)x(2-3)/(2+3)+…+(99+100)x(99-100)/99+100)
=(1-2)+(2-3)+……+(99-100)
=1-100
=-99
答
(1²-2²/1+2)+(2²-3²/2+3)+…+(99²-100²/99+100)
=[(1-2)(1+2)/(1+2)+(2-3)(2+3)/(2+3)+…+(99-100)(99+10)/(99+100)]
=(1-2)+(2-3)+.+(99-100) 共计99组数
=(-1)*99
=-99
答
(1²-2²)/(1+2)+(2²-3²)/(2+3)+…+(99²-100²)/(99+100)
=(1-2)(1+2)/(1+2)+(2-3)(2+3)/(2+3)+…+(99-100)(99+100)/(99+100)
=-1-1-…-1
=-50