若f(x)在(-∞,+∞)内连续,证明:1,若f(x)为奇函数,则∫(0,x)f(t)dt为偶函数;2,若f(x)为偶函数,则∫(0,x)f(t)dt为奇函数
问题描述:
若f(x)在(-∞,+∞)内连续,证明:1,若f(x)为奇函数,则∫(0,x)f(t)dt为偶函数;2,若f(x)为偶函数
,则∫(0,x)f(t)dt为奇函数
答
令g(x)=∫(0,x)f(t)dt
令h(x)=g(x)-g(-x),微分得f(x)+f(-x)=0,因此h(x)为常数,带入x=0证得常数为0.即g(x)-g(-x)=0证得1.
令h(x)=g(x)+g(-x),类似微分证得2.