分组求和法的应用(要有详细并且规范的过程哦~)Sn=(1+1)+[a^(-1)+4]+[a^(-2)+7]+……+[a^(1-n)+(3n-2)],求前n项和.p.s.最好写写答题思路,

问题描述:

分组求和法的应用(要有详细并且规范的过程哦~)
Sn=(1+1)+[a^(-1)+4]+[a^(-2)+7]+……+[a^(1-n)+(3n-2)],求前n项和.
p.s.最好写写答题思路,

Sn
=(1+1)+[a^(-1)+4]+[a^(-2)+7]+……+[a^(1-n)+(3n-2)]
=[1+a^(-1)+a^(-2)+……+a^(1-n)] + [1+4+7+……+(3n-2)]
=[1-a^(-n)]/(1-a)+[1+(3n-2)]*n/2
=[1-a^(-n)]/(1-a)+(3n-1)n/2

sn=[(1+a^(-1)+a^(-2)+……+a^(1-n)]+[1+4+7+……+(3n-2)]前者为等比数列,公比为a^(-1)后者为等差数列,公差为3而等比数列求和公式为Sn=[A1(1-q^n)]/(1-q)等差数列求和公式为sn=a1n+n(n-1)d/2,项数为(3n-2-1)/3=n-1...