计算:1/X(X+2)+1/(X+2)(X+4)+...+1/(X+28)(X+30)

问题描述:

计算:1/X(X+2)+1/(X+2)(X+4)+...+1/(X+28)(X+30)

1/X(X+2)+1/(X+2)(X+4)+...+1/(X+28)(X+30)
=[1/x-1/(x+2)]*(1/2)+[1/(x+2)-1/(x+4)]*(1/2)+...+[1/(x+28)-1/(x+30)]*(1/2)
=(1/2)[1/x-1/(x+30)]
=(1/2)*30/x(x+30)
=15/x(x+30)

1/2*[1/x-1/(x+2)+1/(x+2)-1/(x+4)......+1/(x+28)-1/(x+30)]
=1/2*[1/x-1/(x+30)]