高等数学题"有一数列x1=10,Xn+1=二次根号下6+Xn,试证明该数列存在极限,并求出极限是多少?
问题描述:
高等数学题"有一数列x1=10,Xn+1=二次根号下6+Xn,试证明该数列存在极限,并求出极限是多少?
答
存在极限就是说n足够大的时候,Xn+1/Xn=1也就是:
√(6+Xn)=Xn
Xn^2-Xn-6=0.
解得,Xn=3,(xn=-2舍去..)
极限是3.