椭圆ax^2+by^2=1与直线x+y=1相交于AB两点,若|AB|=2√2且AB的中点C与椭圆中心连线的斜率为√2/2求实数ab的值

问题描述:

椭圆ax^2+by^2=1与直线x+y=1相交于AB两点,若|AB|=2√2且AB的中点C与椭圆中心连线的斜率为√2/2求实数
ab的值

设A(x1,y1),B(x2,y2),C(x0,y0)
联立:{ax²+by²=1,
{x+y-1=0
(a+b)x²-2bx+b-1=0
可得:{x1+x2=2b/(a+b)
{x1·x2=(b-1)/(a+b)
dAB=√2·√[2b/(a+b)]²-[4(b-1)/(a+b)]=2√2
整理得:a²+b²+3ab-a-b=0 ①
{x0=(x1+x2)/2 即{x0=b/(a+b)
{y0=(y1+y2)/2=(-x1+1-x2+1)/2 {y0=a/(a+b)
koc=y0/x0=a/b=√2/2 ②
①②联立,解得:a=1/3,b=√2/3