有12个球,外表一样,有一个重量不一样,和一个天平称法码,问怎样用3步把哪个不一样的称出来是重是轻.只能称3次,把哪个不一样的球称出来,并且要说出它是比其它11个重还是轻。
有12个球,外表一样,有一个重量不一样,和一个天平称法码,问怎样用3步把哪个不一样的称出来是重是轻.
只能称3次,把哪个不一样的球称出来,并且要说出它是比其它11个重还是轻。
一、先称出一个球的重量.二、计算出六个球的总重量M.三、把天平两端各放六个球,哪边超过或不足M,就说明那个球重或轻,同时把两边的球逐个拿下来,如果哪次拿出球后天平平衡了,就说那两个球有问题,根据上面或重或轻判断哪个球不一样.
这个是把12个球分成三组 有两种可能~
平衡和不平衡~平衡很好答 如果不平衡的话 设左面的4个球是A1 A2 A3 A4右面是B1 B2 B3 B4
把A4 B4拿掉把A3放到B4的位置 A3 A4的位置放两个C组的球就能(而且第一次称量的时候记住天平哪边高)算出到底那边的球是坏求 第三步就能称出哪个球是坏球~
-------------------------------------
分三组:每组四个,第一组编号1-4,第二组5-8,第三组9-12.
第一次称:天平左边放第一组,右边放第二组。
A 第一种可能:平衡。则不同的在第三组。
接下来可以在左边放第9、10、11号,右边放1、2、3号三个正常的。
a.如果平衡,则12号是不同的;
b.如果左重右轻,则不同的在9、10、11号中,而且比正常球重。再称一次:9放左边,10放右边,如果平衡,则11号是不同的;如果左重右轻,则9号是不同的,如果右重左轻,则10号是不同的。
c.如果左轻右重,道理同b
B 第二种可能:左重右轻,则不同的在1-8号中,但不知比正常的轻还是重。
第二次称:左边放1、2、5号,右边放6、9、3号。
a.如果平衡。则不同的在4、7、8中。可以称第三次:左边放4、7,右边放9、10。如果平衡,则8是不同;如果左重右轻,则4是不同;如果左轻右重,则7是不同。
b.仍然左重右轻。则不同的在位置没有改变的1、2、6中。可以称第三次:左边放1、6,右边放9、10。如果平衡,则2是不同; 如果左重右轻,则1是不同;如果左轻右重,则6是不同。
c:左轻右重。则不同的在5、3、中,因为只有它们改变了原来的位置。可以称第三次:左放5,3,右放9,10。如果左轻右重,则5是不同,如果左重右轻,则3是不同。
C 第三种可能:左轻右重,道理同B
至此,不论发生任何情况,称三次都可以找出不同,而且知道比正常的轻了还是重了。
第一次,先将1-4号放在左边,5-8号放在右边.1.如果右重则坏球在1-8号.第二次将2-4号拿掉,将6-8号从右边移到左边,把9-11号放 在右边.就是说,把1,6,7,8放在左边,5,9,10,11放在右边.1.如果右重则坏球在没有被触动的1,5号....