设i1,i2,i3…in是1,2,3…n的一个排列,证明τ(i1,i2…in)+τ(in,i(n-1)…i1)=Cn2

问题描述:

设i1,i2,i3…in是1,2,3…n的一个排列,证明τ(i1,i2…in)+τ(in,i(n-1)…i1)=Cn2

假设n在第i_j个位置,那么前面比它小的有j-1个数,后面比它小的有n-j个数,那么加起来就是n-1
对于n-1,如此前面后面比它小的数总数为n-2个数
以此类推,最后τ(i1,i2…in)+τ(in,i(n-1)…i1)=Σ (n-1) =n(n-1)/2 =c_n 2