二元二次方程组x^2-2xy-3y^2=0和x^2-xy+y^2=3帮我解解吧,我想了很久了

问题描述:

二元二次方程组x^2-2xy-3y^2=0和x^2-xy+y^2=3
帮我解解吧,我想了很久了

由第一个式子得X=-y 或x=3y 那么分别代入剩下1个式子就是解一元二次方程了 剩下的我就不用说了 望采纳

x^2-2xy-3y^2=0 (x-y)^2-4y^2=0(x-y)^2=(2y)^2x-y=±2yx-y=2y或 x-y=-2yx1=3y x2=-y将x1,x2分别代入②,得:(3y)^2-y*3y+y^2=3y1=±√21/7(-y)^2-y*(-y)+y^2=3y2=±1∴x1=±3√21/3x2=±1