1:为什么说"一切初等函数在其定义域内连续"错误,而要说是"在其定义区间"两者有区别吗?真搞不懂

问题描述:

1:为什么说"一切初等函数在其定义域内连续"错误,而要说是"在其定义区间"两者有区别吗?真搞不懂
2:还有"若函数f(x)在x0点可导,则f(x)在x0的某个邻域内连续"这句话是怎么错的?

第一句话是哪儿来的?不知道你们教材上对定义域和定义区间是怎么分别的?一般的分析书上都是说初等函数在其定义域内连续.
第二题是错的.存在只在一个点可导,其余点都不连续的函数.比如f(x)=x^2D(x),其中D(x)是Dirichlet函数,就是有理点函数值是1,无理点函数值是0的函数.用定义可以证明f在0可导,
f'(0)=lim [f(x)-f(0)]/(x-0)=0,但在任意不等于0的点是不连续的.