函数f(x)定义在区间(0,正无穷)上,且对任意的x∈正实数,y∈实数,都有f(x^y)=yf(x)
问题描述:
函数f(x)定义在区间(0,正无穷)上,且对任意的x∈正实数,y∈实数,都有f(x^y)=yf(x)
求:若f(1/2)>0,解不等式f(ax)>0.(其中字母a为常数)
答
由题意可知f(x)可赋予对数函数模型进行考虑如 假设f(x)=lnx
f(x^y)=ln(x^y)=ylnx=yf(x)
因为f(x^y)=yf(x),令y=0可得
f(1)=0,又因为f(1/2)>f(1)=0
所以f(x)在(0,正无穷)上单调递减
所以要使不等式f(ax)>0成立
只需0