解不等式 (1)|2x+1|+|3x-2|≥5; (2)|x-2|+|x-1|≥5.

问题描述:

解不等式
(1)|2x+1|+|3x-2|≥5;   
(2)|x-2|+|x-1|≥5.

(1)|2x+1|+|3x-2|≥5
讨论x分别在各区间的情况,即
x<-

1
2
时,-2x-1-3x+2≥5,解得:x≤-
4
5

-
1
2
≤x<
2
3
时,2x+1-3x+2≥5,解得:x≤-2(舍去);
x≥
2
3
时,2x+1+3x-2≥5,解得:x≥
6
5

∴不等式的解集为{x|x≤-
4
5
或x≥
6
5
};
(2)讨论x分别在各区间的情况,即
x<1时,-x+2-x+1≥5,解得x≤-1;
1≤x≤2时,-x+2+x-1≥5,不成立;
x>2时,x-2+x-1≥5,解得x≥4,
∴不等式的解集为{x|x≤-1或x≥4}.